JFIFXX    $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222"4 ,PG"Z_4˷kjزZ,F+_z,© zh6٨icfu#ډb_N?wQ5-~I8TK<5oIv-k_U_~bMdӜUHh?]EwQk{_}qFW7HTՑYF?_'ϔ_Ջt=||I 6έ"D/[k9Y8ds|\Ҿp6Ҵ].6znopM[mei$[soᘨ˸ nɜG-ĨUycP3.DBli;hjx7Z^NhN3u{:jx힞#M&jL P@_ P&o89@Sz6t7#Oߋ s}YfTlmrZ)'Nk۞pw\Tȯ?8`Oi{wﭹW[r Q4F׊3m&L=h3z~#\l :F,j@ ʱwQT8"kJO6֚l}R>ډK]y&p}b;N1mr$|7>e@BTM*-iHgD) Em|ؘbҗaҾt4oG*oCNrPQ@z,|?W[0:n,jWiEW$~/hp\?{(0+Y8rΟ+>S-SVN;}s?. w9˟<Mq4Wv'{)01mBVW[8/< %wT^5b)iM pgN&ݝVO~qu9 !J27$O-! :%H ـyΠM=t{!S oK8txA& j0 vF Y|y ~6@c1vOpIg4lODL Rcj_uX63?nkWyf;^*B @~a`Eu+6L.ü>}y}_O6͐:YrGXkGl^w~㒶syIu! W XN7BVO!X2wvGRfT#t/?%8^WaTGcLMI(J1~8?aT ]ASE(*E} 2#I/׍qz^t̔bYz4xt){ OH+(EA&NXTo"XC')}Jzp ~5}^+6wcQ|LpdH}(.|kc4^"Z?ȕ a<L!039C EuCFEwç ;n?*oB8bʝ'#RqfM}7]s2tcS{\icTx;\7KPʇ Z O-~c>"?PEO8@8GQgaՎ󁶠䧘_%#r>1zaebqcPѵn#L =׀t L7`VA{C:ge@w1 Xp3c3ġpM"'-@n4fGB3DJ8[JoߐgK)ƛ$ 83+ 6ʻ SkI*KZlT _`?KQKdB`s}>`*>,*@JdoF*弝O}ks]yߘc1GV<=776qPTtXԀ!9*44Tހ3XΛex46YD  BdemDa\_l,G/֌7Y](xTt^%GE4}bTڹ;Y)BQu>J/J ⮶.XԄjݳ+Ed r5_D1 o Bx΢#<W8R6@gM. drD>(otU@x=~v2 ӣdoBd3eO6㣷ݜ66YQz`S{\P~z m5{J/L1xO\ZFu>ck#&:`$ai>2ΔloF[hlEܺΠk:)` $[69kOw\|8}ބ:񶐕IA1/=2[,!.}gN#ub ~݊}34qdELc$"[qU硬g^%B zrpJru%v\h1Yne`ǥ:gpQM~^Xi `S:V29.PV?Bk AEvw%_9CQwKekPؠ\;Io d{ ߞoc1eP\ `E=@KIRYK2NPlLɀ)&eB+ь( JTx_?EZ }@ 6U뙢طzdWIn` D噥[uV"G&Ú2g}&m?ċ"Om# {ON"SXNeysQ@FnVgdX~nj]J58up~.`r\O,ư0oS _Ml4kv\JSdxSW<AeIX$Iw:Sy›R9Q[,5;@]%u@ *rolbI  +%m:͇ZVủθau,RW33 dJeTYE.Mϧ-oj3+yy^cVO9NV\nd1 !͕_)av;թMlWR1)ElP;yوÏu 3k5Pr6<⒲l!˞*u־n!l:UNW %Chx8vL'X@*)̮ˍ D-M+JUkvK+x8cY?Ԡ~3mo|u@[XeYC\Kpx8oCC&N~3-H MXsu<`~"WL$8ξ3a)|:@m\^`@ҷ)5p+6p%i)P Mngc#0AruzRL+xSS?ʮ}()#tmˇ!0}}y$6Lt;$ʳ{^6{v6ķܰgVcnn ~zx«,2u?cE+ȘH؎%Za)X>uWTzNyosFQƤ$*&LLXL)1" LeOɟ9=:tZcŽY?ӭVwv~,Yrۗ|yGaFC.+ v1fήJ]STBn5sW}y$~z'c 8  ,! pVNSNNqy8z˱A4*'2n<s^ǧ˭PJޮɏUGLJ*#i}K%,)[z21z ?Nin1?TIR#m-1lA`fT5+ܐcq՝ʐ,3f2Uեmab#ŠdQy>\)SLYw#.ʑf ,"+w~N'cO3FN<)j&,- љ֊_zSTǦw>?nU仆Ve0$CdrP m׈eXmVu L.bֹ [Դaզ*\y8Է:Ez\0KqC b̘cөQ=0YsNS.3.Oo:#v7[#߫ 5܎LEr49nCOWlG^0k%;YߝZǓ:S#|}y,/kLd TA(AI$+I3;Y*Z}|ӧOdv..#:nf>>ȶITX 8y"dR|)0=n46ⲑ+ra ~]R̲c?6(q;5% |uj~z8R=XIV=|{vGj\gcqz؋%Mߍ1y#@f^^>N#x#۹6Y~?dfPO{P4Vu1E1J *|%JN`eWuzk M6q t[ gGvWIGu_ft5j"Y:Tɐ*; e54q$C2d} _SL#mYpO.C;cHi#֩%+) ӍƲVSYźg |tj38r|V1#;.SQA[S#`n+$$I P\[@s(EDzP])8G#0B[ىXIIq<9~[Z멜Z⊔IWU&A>P~#dp]9 "cP Md?٥Ifتuk/F9c*9Ǎ:ØFzn*@|Iށ9N3{'['ͬҲ4#}!V Fu,,mTIkv C7vB6kT91*l '~ƞFlU'M ][ΩũJ_{iIn$L jOdxkza۪#EClx˘oVɞljr)/,߬hL#^Lф,íMƁe̩NBLiLq}(q6IçJ$WE$:=#(KBzђ xlx?>Պ+>W,Ly!_DŌlQ![ SJ1ƐY}b,+Loxɓ)=yoh@꥟/Iѭ=Py9 ۍYӘe+pJnϱ?V\SO%(t =?MR[Șd/ nlB7j !;ӥ/[-A>dNsLj ,ɪv=1c.SQO3UƀܽE̻9GϷD7(}Ävӌ\y_0[w <΍>a_[0+LF.޺f>oNTq;y\bՃyjH<|q-eɏ_?_9+PHp$[uxK wMwNی'$Y2=qKBP~Yul:[<F12O5=d]Ysw:ϮEj,_QXz`H1,#II dwrP˂@ZJVy$\y{}^~[:NߌUOdؾe${p>G3cĖlʌ ת[`ϱ-WdgIig2 }s ؤ(%#sS@~3XnRG~\jc3vӍLM[JBTs3}jNʖW;7ç?=XF=-=qߚ#='c7ڑWI(O+=:uxqe2zi+kuGR0&eniT^J~\jyp'dtGsO39* b#Ɋ p[BwsT>d4ۧsnvnU_~,vƜJ1s QIz)(lv8MU=;56Gs#KMP=LvyGd}VwWBF'à ?MHUg2 !p7Qjڴ=ju JnA suMeƆҔ!)'8Ϣٔޝ(Vpצ֖d=ICJǠ{qkԭ߸i@Ku|p=..*+xz[Aqġ#s2aƊRR)*HRsi~a &fMP-KL@ZXy'x{}Zm+:)) IJ-iu ܒH'L(7yGӜq j 6ߌg1go,kرtY?W,pefOQS!K۟cҒA|սj>=⬒˧L[ ߿2JaB~Ru:Q] 0H~]7ƼI(}cq 'ήETq?fabӥvr )o-Q_'ᴎoK;Vo%~OK *bf:-ťIR`B5!RB@ï u ̯e\_U_ gES3QTaxU<~c?*#]MW,[8Oax]1bC|踤Plw5V%){t<d50iXSUm:Z┵i"1^B-PhJ&)O*DcWvM)}Pܗ-q\mmζZ-l@}aE6F@&Sg@ݚM ȹ 4#p\HdYDoH"\..RBHz_/5˘6KhJRPmƶim3,#ccoqa)*PtRmk7xDE\Y閣_X<~)c[[BP6YqS0%_;Àv~| VS؇ 'O0F0\U-d@7SJ*z3nyPOm~P3|Yʉr#CSN@ ƮRN)r"C:: #qbY. 6[2K2uǦHYRQMV G$Q+.>nNHq^ qmMVD+-#*U̒ p욳u:IBmPV@Or[b= 1UE_NmyKbNOU}the`|6֮P>\2PVIDiPO;9rmAHGWS]J*_G+kP2KaZH'KxWMZ%OYDRc+o?qGhmdSoh\D|:WUAQc yTq~^H/#pCZTI1ӏT4"ČZ}`w#*,ʹ 0i課Om*da^gJ݅{le9uF#Tֲ̲ٞC"qߍ ոޑo#XZTp@ o8(jdxw],f`~|,s^f1t|m򸄭/ctr5s79Q4H1꠲BB@l9@C+wpxu£Yc9?`@#omHs2)=2.ljg9$YS%*LRY7Z,*=䷘$armoϰUW.|rufIGwtZwo~5 YյhO+=8fF)W7L9lM̘·Y֘YLf큹pRF99.A "wz=E\Z'a 2Ǚ#;'}G*l^"q+2FQ hjkŦ${ޮ-T٭cf|3#~RJt$b(R(rdx >U b&9,>%E\ Άe$'q't*אެb-|dSBOO$R+H)܎K1m`;J2Y~9Og8=vqD`K[F)k[1m޼cn]skz$@)!I x՝"v9=ZA=`Ɠi :E)`7vI}dYI_ o:obo 3Q&D&2= Ά;>hy.*ⅥSӬ+q&j|UƧ}J0WW< ۋS)jQRjƯrN)Gű4Ѷ(S)Ǣ8iW52No˓ ۍ%5brOnL;n\G=^UdI8$&h'+(cȁ߫klS^cƗjԌEꭔgFȒ@}O*;evWVYJ\]X'5ղkFb 6Ro՜mi Ni>J?lPmU}>_Z&KKqrIDՉ~q3fL:Se>E-G{L6pe,8QIhaXaUA'ʂs+טIjP-y8ۈZ?J$WP Rs]|l(ԓsƊio(S0Y 8T97.WiLc~dxcE|2!XKƘਫ਼$((6~|d9u+qd^389Y6L.I?iIq9)O/뚅OXXVZF[یgQLK1RҖr@v#XlFНyS87kF!AsM^rkpjPDyS$Nqnxҍ!Uf!ehi2m`YI9r6 TFC}/y^Η5d'9A-J>{_l+`A['յϛ#w:݅%X}&PStQ"-\縵/$ƗhXb*yBS;Wջ_mcvt?2}1;qSdd~u:2k52R~z+|HE!)Ǟl7`0<,2*Hl-x^'_TVgZA'j ^2ΪN7t?w x1fIzC-ȖK^q;-WDvT78Z hK(P:Q- 8nZ܃e貾<1YT<,"6{/ ?͟|1:#gW>$dJdB=jf[%rE^il:BxSּ1հ,=*7 fcG#q eh?27,!7x6nLC4x},GeǝtC.vS F43zz\;QYC,6~;RYS/6|25vTimlv& nRh^ejRLGf? ۉҬܦƩ|Ȱ>3!viʯ>vオX3e_1zKȗ\qHS,EW[㺨uch⍸O}a>q6n6N6qN ! 1AQaq0@"2BRb#Pr3C`Scst$4D%Td ?Na3mCwxAmqmm$4n淿t'C"wzU=D\R+wp+YT&պ@ƃ3ޯ?AﶂaŘ@-Q=9Dռѻ@MVP܅G5fY6# ?0UQ,IX(6ڵ[DIMNލc&υj\XR|,4 jThAe^db#$]wOӪ1y%LYm뭛CUƃߜ}Cy1XνmF8jI]HۺиE@Ii;r8ӭVFՇ| &?3|xBMuSGe=Ӕ#BE5GY!z_eqр/W>|-Ci߇t1ޯќdR3ug=0 5[?#͏qcfH{ ?u=??ǯ}ZzhmΔBFTWPxs}G93 )gGR<>r h$'nchPBjJҧH -N1N?~}-q!=_2hcMlvY%UE@|vM2.Y[|y"EïKZF,ɯ?,q?vM 80jx";9vk+ ֧ ȺU?%vcVmA6Qg^MA}3nl QRNl8kkn'(M7m9وq%ޟ*h$Zk"$9: ?U8Sl,,|ɒxH(ѷGn/Q4PG%Ա8N! &7;eKM749R/%lc>x;>C:th?aKXbheᜋ^$Iհ hr7%F$EFdt5+(M6tÜUU|zW=aTsTgdqPQb'm1{|YXNb P~F^F:k6"j! Ir`1&-$Bevk:y#ywI0x=D4tUPZHڠ底taP6b>xaQ# WeFŮNjpJ* mQN*I-*ȩFg3 5Vʊɮa5FO@{NX?H]31Ri_uѕ 0 F~:60p͈SqX#a5>`o&+<2D: ڝ$nP*)N|yEjF5ټeihyZ >kbHavh-#!Po=@k̆IEN@}Ll?jO߭ʞQ|A07xwt!xfI2?Z<ץTcUj]陎Ltl }5ϓ$,Omˊ;@OjEj(ا,LXLOЦ90O .anA7j4 W_ٓzWjcBy՗+EM)dNg6y1_xp$Lv:9"zpʙ$^JԼ*ϭo=xLj6Ju82AH3$ٕ@=Vv]'qEz;I˼)=ɯx /W(Vp$ mu񶤑OqˎTr㠚xsrGCbypG1ߠw e8$⿄/M{*}W]˷.CK\ުx/$WPwr |i&}{X >$-l?-zglΆ(FhvS*b߲ڡn,|)mrH[a3ר[13o_U3TC$(=)0kgP u^=4 WYCҸ:vQרXàtkm,t*^,}D* "(I9R>``[~Q]#afi6l86:,ssN6j"A4IuQ6E,GnHzSHOuk5$I4ؤQ9@CwpBGv[]uOv0I4\yQѸ~>Z8Taqޣ;za/SI:ܫ_|>=Z8:SUIJ"IY8%b8H:QO6;7ISJҌAά3>cE+&jf$eC+z;V rʺmyeaQf&6ND.:NTvm<- uǝ\MvZYNNT-A>jr!SnO 13Ns%3D@`ܟ 1^c< aɽ̲Xë#w|ycW=9I*H8p^(4՗karOcWtO\ƍR8'KIQ?5>[}yUײ -h=% qThG2)"ו3]!kB*pFDlA,eEiHfPs5H:Փ~H0DتDIhF3c2E9H5zԑʚiX=:mxghd(v׊9iSOd@0ڽ:p5h-t&Xqӕ,ie|7A2O%PEhtjY1wЃ!  ࢽMy7\a@ţJ 4ȻF@o̒?4wx)]P~u57X 9^ܩU;Iꭆ 5 eK27({|Y׎ V\"Z1 Z}(Ǝ"1S_vE30>p; ΝD%xW?W?vo^Vidr[/&>~`9Why;R ;;ɮT?r$g1KACcKl:'3 cﳯ*"t8~l)m+U,z`(>yJ?h>]vЍG*{`;y]IT ;cNUfo¾h/$|NS1S"HVT4uhǜ]v;5͠x'C\SBplh}N ABx%ޭl/Twʽ]D=Kžr㻠l4SO?=k M: cCa#ha)ѐxcsgPiG{+xQI= zԫ+ 8"kñj=|c yCF/*9жh{ ?4o kmQNx;Y4膚aw?6>e]Qr:g,i"ԩA*M7qB?ӕFhV25r[7 Y }LR}*sg+xr2U=*'WSZDW]WǞ<叓{$9Ou4y90-1'*D`c^o?(9uݐ'PI& fJݮ:wSjfP1F:X H9dԯ˝[_54 }*;@ܨ ðynT?ןd#4rGͨH1|-#MrS3G3).᧏3vz֑r$G"`j 1tx0<ƆWh6y6,œGagAyb)hDß_mü gG;evݝnQ C-*oyaMI><]obD":GA-\%LT8c)+y76oQ#*{(F⽕y=rW\p۩cA^e6KʐcVf5$'->ՉN"F"UQ@fGb~#&M=8טJNu9D[̤so~ G9TtW^g5y$bY'سǴ=U-2 #MCt(i lj@Q 5̣i*OsxKf}\M{EV{υƇ);HIfeLȣr2>WIȂ6ik 5YOxȺ>Yf5'|H+98pjn.OyjY~iw'l;s2Y:'lgꥴ)o#'SaaKZ m}`169n"xI *+ }FP"l45'ZgE8?[X7(.Q-*ތL@̲v.5[=t\+CNܛ,gSQnH}*FG16&:t4ُ"Ạ$b |#rsaT ]ӽDP7ո0y)e$ٕvIh'QEAm*HRI=: 4牢) %_iNݧl] NtGHL ɱg<1V,J~ٹ"KQ 9HS9?@kr;we݁]I!{ @G["`J:n]{cAEVʆ#U96j#Ym\qe4hB7Cdv\MNgmAyQL4uLjj9#44tl^}LnR!t±]rh6ٍ>yҏNfU  Fm@8}/ujb9he:AyծwGpΧh5l}3p468)Udc;Us/֔YX1O2uqs`hwgr~{ RmhN؎*q 42*th>#E#HvOq}6e\,Wk#Xb>p}դ3T5†6[@Py*n|'f֧>lư΂̺SU'*qp_SM 'c6m ySʨ;MrƋmKxo,GmPAG:iw9}M(^V$ǒѽ9| aJSQarB;}ٻ֢2%Uc#gNaݕ'v[OY'3L3;,p]@S{lsX'cjwk'a.}}& dP*bK=ɍ!;3ngΊUߴmt'*{,=SzfD Ako~Gaoq_mi}#mPXhύmxǍ΂巿zfQc|kc?WY$_Lvl߶c`?ljݲˏ!V6UЂ(A4y)HpZ_x>eR$/`^'3qˏ-&Q=?CFVR DfV9{8gnh(P"6[D< E~0<@`G6Hгcc cK.5DdB`?XQ2ٿyqo&+1^ DW0ꊩG#QnL3c/x 11[yxპCWCcUĨ80me4.{muI=f0QRls9f9~fǨa"@8ȁQ#cicG$Gr/$W(WV"m7[mAmboD j۳ l^kh׽ # iXnveTka^Y4BNĕ0 !01@Q"2AaPq3BR?@4QT3,㺠W[=JKϞ2r^7vc:9 EߴwS#dIxu:Hp9E! V 2;73|F9Y*ʬFDu&y؟^EAA(ɩ^GV:ݜDy`Jr29ܾ㝉[E;FzxYGUeYC v-txIsםĘqEb+P\ :>iC';k|zرny]#ǿbQw(r|ӹs[D2v-%@;8<a[\o[ϧwI!*0krs)[J9^ʜp1) "/_>o<1AEy^C`x1'ܣnps`lfQ):lb>MejH^?kl3(z:1ŠK&?Q~{ٺhy/[V|6}KbXmn[-75q94dmc^h X5G-}دBޟ |rtMV+]c?-#ڛ^ǂ}LkrOu>-Dry D?:ޞUǜ7V?瓮"#rչģVR;n/_ ؉vݶe5db9/O009G5nWJpA*r9>1.[tsFnQ V 77R]ɫ8_0<՜IFu(v4Fk3E)N:yڮeP`1}$WSJSQNjٺ޵#lј(5=5lǏmoWv-1v,Wmn߀$x_DȬ0¤#QR[Vkzmw"9ZG7'[=Qj8R?zf\a=OU*oBA|G254 p.w7  &ξxGHp B%$gtЏ򤵍zHNuЯ-'40;_3 !01"@AQa2Pq#3BR?ʩcaen^8F<7;EA{EÖ1U/#d1an.1ě0ʾRh|RAo3m3 % 28Q yφHTo7lW>#i`qca m,B-j݋'mR1Ήt>Vps0IbIC.1Rea]H64B>o]($Bma!=?B KǾ+Ծ"nK*+[T#{EJSQs5:U\wĐf3܆&)IԆwE TlrTf6Q|Rh:[K zc֧GC%\_a84HcObiؖV7H )*ģK~Xhչ04?0 E<}3#u? |gS6ꊤ|I#Hڛ աwX97Ŀ%SLy6č|Fa 8b$sקhb9RAu7˨pČ_\*w묦F 4D~f|("mNKiS>$d7SlA/²SL|6N}S˯g]6; #. 403WebShell
403Webshell
Server IP : 173.199.190.172  /  Your IP : 216.73.216.167
Web Server : Apache
System : Linux chs1.nescrow.com.ng 3.10.0-1160.119.1.el7.x86_64 #1 SMP Tue Jun 4 14:43:51 UTC 2024 x86_64
User : oysipaoygov ( 1026)
PHP Version : 5.6.40
Disable Function : exec,passthru,shell_exec,system
MySQL : ON  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /usr/local/lp/sonarperl/man/man3/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/local/lp/sonarperl/man/man3/Math::BigRat.3
.\" -*- mode: troff; coding: utf-8 -*-
.\" Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
.ie n \{\
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds C`
.    ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
.    if \nF \{\
.        de IX
.        tm Index:\\$1\t\\n%\t"\\$2"
..
.        if !\nF==2 \{\
.            nr % 0
.            nr F 2
.        \}
.    \}
.\}
.rr rF
.\" ========================================================================
.\"
.IX Title "Math::BigRat 3"
.TH Math::BigRat 3 2023-05-26 "perl v5.38.0" "Perl Programmers Reference Guide"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH NAME
Math::BigRat \- arbitrary size rational number math package
.SH SYNOPSIS
.IX Header "SYNOPSIS"
.Vb 1
\&    use Math::BigRat;
\&
\&    my $x = Math::BigRat\->new(\*(Aq3/7\*(Aq); $x += \*(Aq5/9\*(Aq;
\&
\&    print $x\->bstr(), "\en";
\&    print $x ** 2, "\en";
\&
\&    my $y = Math::BigRat\->new(\*(Aqinf\*(Aq);
\&    print "$y ", ($y\->is_inf ? \*(Aqis\*(Aq : \*(Aqis not\*(Aq), " infinity\en";
\&
\&    my $z = Math::BigRat\->new(144); $z\->bsqrt();
.Ve
.SH DESCRIPTION
.IX Header "DESCRIPTION"
Math::BigRat complements Math::BigInt and Math::BigFloat by providing support
for arbitrary big rational numbers.
.SS "MATH LIBRARY"
.IX Subsection "MATH LIBRARY"
You can change the underlying module that does the low-level
math operations by using:
.PP
.Vb 1
\&    use Math::BigRat try => \*(AqGMP\*(Aq;
.Ve
.PP
Note: This needs Math::BigInt::GMP installed.
.PP
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
.PP
.Vb 1
\&    use Math::BigRat try => \*(AqFoo,Math::BigInt::Bar\*(Aq;
.Ve
.PP
If you want to get warned when the fallback occurs, replace "try" with "lib":
.PP
.Vb 1
\&    use Math::BigRat lib => \*(AqFoo,Math::BigInt::Bar\*(Aq;
.Ve
.PP
If you want the code to die instead, replace "try" with "only":
.PP
.Vb 1
\&    use Math::BigRat only => \*(AqFoo,Math::BigInt::Bar\*(Aq;
.Ve
.SH METHODS
.IX Header "METHODS"
Any methods not listed here are derived from Math::BigFloat (or
Math::BigInt), so make sure you check these two modules for further
information.
.IP \fBnew()\fR 4
.IX Item "new()"
.Vb 1
\&    $x = Math::BigRat\->new(\*(Aq1/3\*(Aq);
.Ve
.Sp
Create a new Math::BigRat object. Input can come in various forms:
.Sp
.Vb 9
\&    $x = Math::BigRat\->new(123);                            # scalars
\&    $x = Math::BigRat\->new(\*(Aqinf\*(Aq);                          # infinity
\&    $x = Math::BigRat\->new(\*(Aq123.3\*(Aq);                        # float
\&    $x = Math::BigRat\->new(\*(Aq1/3\*(Aq);                          # simple string
\&    $x = Math::BigRat\->new(\*(Aq1 / 3\*(Aq);                        # spaced
\&    $x = Math::BigRat\->new(\*(Aq1 / 0.1\*(Aq);                      # w/ floats
\&    $x = Math::BigRat\->new(Math::BigInt\->new(3));           # BigInt
\&    $x = Math::BigRat\->new(Math::BigFloat\->new(\*(Aq3.1\*(Aq));     # BigFloat
\&    $x = Math::BigRat\->new(Math::BigInt::Lite\->new(\*(Aq2\*(Aq));   # BigLite
\&
\&    # You can also give D and N as different objects:
\&    $x = Math::BigRat\->new(
\&            Math::BigInt\->new(\-123),
\&            Math::BigInt\->new(7),
\&         );                      # => \-123/7
.Ve
.IP \fBnumerator()\fR 4
.IX Item "numerator()"
.Vb 1
\&    $n = $x\->numerator();
.Ve
.Sp
Returns a copy of the numerator (the part above the line) as signed BigInt.
.IP \fBdenominator()\fR 4
.IX Item "denominator()"
.Vb 1
\&    $d = $x\->denominator();
.Ve
.Sp
Returns a copy of the denominator (the part under the line) as positive BigInt.
.IP \fBparts()\fR 4
.IX Item "parts()"
.Vb 1
\&    ($n, $d) = $x\->parts();
.Ve
.Sp
Return a list consisting of (signed) numerator and (unsigned) denominator as
BigInts.
.IP \fBdparts()\fR 4
.IX Item "dparts()"
Returns the integer part and the fraction part.
.IP \fBfparts()\fR 4
.IX Item "fparts()"
Returns the smallest possible numerator and denominator so that the numerator
divided by the denominator gives back the original value. For finite numbers,
both values are integers. Mnemonic: fraction.
.IP \fBnumify()\fR 4
.IX Item "numify()"
.Vb 1
\&    my $y = $x\->numify();
.Ve
.Sp
Returns the object as a scalar. This will lose some data if the object
cannot be represented by a normal Perl scalar (integer or float), so
use "\fBas_int()\fR" or "\fBas_float()\fR" instead.
.Sp
This routine is automatically used whenever a scalar is required:
.Sp
.Vb 3
\&    my $x = Math::BigRat\->new(\*(Aq3/1\*(Aq);
\&    @array = (0, 1, 2, 3);
\&    $y = $array[$x];                # set $y to 3
.Ve
.IP \fBas_int()\fR 4
.IX Item "as_int()"
.PD 0
.IP \fBas_number()\fR 4
.IX Item "as_number()"
.PD
.Vb 2
\&    $x = Math::BigRat\->new(\*(Aq13/7\*(Aq);
\&    print $x\->as_int(), "\en";               # \*(Aq1\*(Aq
.Ve
.Sp
Returns a copy of the object as BigInt, truncated to an integer.
.Sp
\&\f(CWas_number()\fR is an alias for \f(CWas_int()\fR.
.IP \fBas_float()\fR 4
.IX Item "as_float()"
.Vb 2
\&    $x = Math::BigRat\->new(\*(Aq13/7\*(Aq);
\&    print $x\->as_float(), "\en";             # \*(Aq1\*(Aq
\&
\&    $x = Math::BigRat\->new(\*(Aq2/3\*(Aq);
\&    print $x\->as_float(5), "\en";            # \*(Aq0.66667\*(Aq
.Ve
.Sp
Returns a copy of the object as BigFloat, preserving the
accuracy as wanted, or the default of 40 digits.
.Sp
This method was added in v0.22 of Math::BigRat (April 2008).
.IP \fBas_hex()\fR 4
.IX Item "as_hex()"
.Vb 2
\&    $x = Math::BigRat\->new(\*(Aq13\*(Aq);
\&    print $x\->as_hex(), "\en";               # \*(Aq0xd\*(Aq
.Ve
.Sp
Returns the BigRat as hexadecimal string. Works only for integers.
.IP \fBas_bin()\fR 4
.IX Item "as_bin()"
.Vb 2
\&    $x = Math::BigRat\->new(\*(Aq13\*(Aq);
\&    print $x\->as_bin(), "\en";               # \*(Aq0x1101\*(Aq
.Ve
.Sp
Returns the BigRat as binary string. Works only for integers.
.IP \fBas_oct()\fR 4
.IX Item "as_oct()"
.Vb 2
\&    $x = Math::BigRat\->new(\*(Aq13\*(Aq);
\&    print $x\->as_oct(), "\en";               # \*(Aq015\*(Aq
.Ve
.Sp
Returns the BigRat as octal string. Works only for integers.
.IP \fBfrom_hex()\fR 4
.IX Item "from_hex()"
.Vb 1
\&    my $h = Math::BigRat\->from_hex(\*(Aq0x10\*(Aq);
.Ve
.Sp
Create a BigRat from a hexadecimal number in string form.
.IP \fBfrom_oct()\fR 4
.IX Item "from_oct()"
.Vb 1
\&    my $o = Math::BigRat\->from_oct(\*(Aq020\*(Aq);
.Ve
.Sp
Create a BigRat from an octal number in string form.
.IP \fBfrom_bin()\fR 4
.IX Item "from_bin()"
.Vb 1
\&    my $b = Math::BigRat\->from_bin(\*(Aq0b10000000\*(Aq);
.Ve
.Sp
Create a BigRat from an binary number in string form.
.IP \fBbnan()\fR 4
.IX Item "bnan()"
.Vb 1
\&    $x = Math::BigRat\->bnan();
.Ve
.Sp
Creates a new BigRat object representing NaN (Not A Number).
If used on an object, it will set it to NaN:
.Sp
.Vb 1
\&    $x\->bnan();
.Ve
.IP \fBbzero()\fR 4
.IX Item "bzero()"
.Vb 1
\&    $x = Math::BigRat\->bzero();
.Ve
.Sp
Creates a new BigRat object representing zero.
If used on an object, it will set it to zero:
.Sp
.Vb 1
\&    $x\->bzero();
.Ve
.IP \fBbinf()\fR 4
.IX Item "binf()"
.Vb 1
\&    $x = Math::BigRat\->binf($sign);
.Ve
.Sp
Creates a new BigRat object representing infinity. The optional argument is
either '\-' or '+', indicating whether you want infinity or minus infinity.
If used on an object, it will set it to infinity:
.Sp
.Vb 2
\&    $x\->binf();
\&    $x\->binf(\*(Aq\-\*(Aq);
.Ve
.IP \fBbone()\fR 4
.IX Item "bone()"
.Vb 1
\&    $x = Math::BigRat\->bone($sign);
.Ve
.Sp
Creates a new BigRat object representing one. The optional argument is
either '\-' or '+', indicating whether you want one or minus one.
If used on an object, it will set it to one:
.Sp
.Vb 2
\&    $x\->bone();                 # +1
\&    $x\->bone(\*(Aq\-\*(Aq);              # \-1
.Ve
.IP \fBlength()\fR 4
.IX Item "length()"
.Vb 1
\&    $len = $x\->length();
.Ve
.Sp
Return the length of \f(CW$x\fR in digits for integer values.
.IP \fBdigit()\fR 4
.IX Item "digit()"
.Vb 2
\&    print Math::BigRat\->new(\*(Aq123/1\*(Aq)\->digit(1);     # 1
\&    print Math::BigRat\->new(\*(Aq123/1\*(Aq)\->digit(\-1);    # 3
.Ve
.Sp
Return the N'ths digit from X when X is an integer value.
.IP \fBbnorm()\fR 4
.IX Item "bnorm()"
.Vb 1
\&    $x\->bnorm();
.Ve
.Sp
Reduce the number to the shortest form. This routine is called
automatically whenever it is needed.
.IP \fBbfac()\fR 4
.IX Item "bfac()"
.Vb 1
\&    $x\->bfac();
.Ve
.Sp
Calculates the factorial of \f(CW$x\fR. For instance:
.Sp
.Vb 2
\&    print Math::BigRat\->new(\*(Aq3/1\*(Aq)\->bfac(), "\en";   # 1*2*3
\&    print Math::BigRat\->new(\*(Aq5/1\*(Aq)\->bfac(), "\en";   # 1*2*3*4*5
.Ve
.Sp
Works currently only for integers.
.IP \fBbround()\fR/\fBround()\fR/\fBbfround()\fR 4
.IX Item "bround()/round()/bfround()"
Are not yet implemented.
.IP \fBbmod()\fR 4
.IX Item "bmod()"
.Vb 1
\&    $x\->bmod($y);
.Ve
.Sp
Returns \f(CW$x\fR modulo \f(CW$y\fR. When \f(CW$x\fR is finite, and \f(CW$y\fR is finite and non-zero, the
result is identical to the remainder after floored division (F\-division). If,
in addition, both \f(CW$x\fR and \f(CW$y\fR are integers, the result is identical to the result
from Perl's % operator.
.IP \fBbmodinv()\fR 4
.IX Item "bmodinv()"
.Vb 1
\&    $x\->bmodinv($mod);          # modular multiplicative inverse
.Ve
.Sp
Returns the multiplicative inverse of \f(CW$x\fR modulo \f(CW$mod\fR. If
.Sp
.Vb 1
\&    $y = $x \-> copy() \-> bmodinv($mod)
.Ve
.Sp
then \f(CW$y\fR is the number closest to zero, and with the same sign as \f(CW$mod\fR,
satisfying
.Sp
.Vb 1
\&    ($x * $y) % $mod = 1 % $mod
.Ve
.Sp
If \f(CW$x\fR and \f(CW$y\fR are non-zero, they must be relative primes, i.e.,
\&\f(CW\*(C`bgcd($y, $mod)==1\*(C'\fR. '\f(CW\*(C`NaN\*(C'\fR' is returned when no modular multiplicative
inverse exists.
.IP \fBbmodpow()\fR 4
.IX Item "bmodpow()"
.Vb 2
\&    $num\->bmodpow($exp,$mod);           # modular exponentiation
\&                                        # ($num**$exp % $mod)
.Ve
.Sp
Returns the value of \f(CW$num\fR taken to the power \f(CW$exp\fR in the modulus
\&\f(CW$mod\fR using binary exponentiation.  \f(CW\*(C`bmodpow\*(C'\fR is far superior to
writing
.Sp
.Vb 1
\&    $num ** $exp % $mod
.Ve
.Sp
because it is much faster \- it reduces internal variables into
the modulus whenever possible, so it operates on smaller numbers.
.Sp
\&\f(CW\*(C`bmodpow\*(C'\fR also supports negative exponents.
.Sp
.Vb 1
\&    bmodpow($num, \-1, $mod)
.Ve
.Sp
is exactly equivalent to
.Sp
.Vb 1
\&    bmodinv($num, $mod)
.Ve
.IP \fBbneg()\fR 4
.IX Item "bneg()"
.Vb 1
\&    $x\->bneg();
.Ve
.Sp
Used to negate the object in-place.
.IP \fBis_one()\fR 4
.IX Item "is_one()"
.Vb 1
\&    print "$x is 1\en" if $x\->is_one();
.Ve
.Sp
Return true if \f(CW$x\fR is exactly one, otherwise false.
.IP \fBis_zero()\fR 4
.IX Item "is_zero()"
.Vb 1
\&    print "$x is 0\en" if $x\->is_zero();
.Ve
.Sp
Return true if \f(CW$x\fR is exactly zero, otherwise false.
.IP \fBis_pos()\fR/\fBis_positive()\fR 4
.IX Item "is_pos()/is_positive()"
.Vb 1
\&    print "$x is >= 0\en" if $x\->is_positive();
.Ve
.Sp
Return true if \f(CW$x\fR is positive (greater than or equal to zero), otherwise
false. Please note that '+inf' is also positive, while 'NaN' and '\-inf' aren't.
.Sp
\&\f(CWis_positive()\fR is an alias for \f(CWis_pos()\fR.
.IP \fBis_neg()\fR/\fBis_negative()\fR 4
.IX Item "is_neg()/is_negative()"
.Vb 1
\&    print "$x is < 0\en" if $x\->is_negative();
.Ve
.Sp
Return true if \f(CW$x\fR is negative (smaller than zero), otherwise false. Please
note that '\-inf' is also negative, while 'NaN' and '+inf' aren't.
.Sp
\&\f(CWis_negative()\fR is an alias for \f(CWis_neg()\fR.
.IP \fBis_int()\fR 4
.IX Item "is_int()"
.Vb 1
\&    print "$x is an integer\en" if $x\->is_int();
.Ve
.Sp
Return true if \f(CW$x\fR has a denominator of 1 (e.g. no fraction parts), otherwise
false. Please note that '\-inf', 'inf' and 'NaN' aren't integer.
.IP \fBis_odd()\fR 4
.IX Item "is_odd()"
.Vb 1
\&    print "$x is odd\en" if $x\->is_odd();
.Ve
.Sp
Return true if \f(CW$x\fR is odd, otherwise false.
.IP \fBis_even()\fR 4
.IX Item "is_even()"
.Vb 1
\&    print "$x is even\en" if $x\->is_even();
.Ve
.Sp
Return true if \f(CW$x\fR is even, otherwise false.
.IP \fBbceil()\fR 4
.IX Item "bceil()"
.Vb 1
\&    $x\->bceil();
.Ve
.Sp
Set \f(CW$x\fR to the next bigger integer value (e.g. truncate the number to integer
and then increment it by one).
.IP \fBbfloor()\fR 4
.IX Item "bfloor()"
.Vb 1
\&    $x\->bfloor();
.Ve
.Sp
Truncate \f(CW$x\fR to an integer value.
.IP \fBbint()\fR 4
.IX Item "bint()"
.Vb 1
\&    $x\->bint();
.Ve
.Sp
Round \f(CW$x\fR towards zero.
.IP \fBbsqrt()\fR 4
.IX Item "bsqrt()"
.Vb 1
\&    $x\->bsqrt();
.Ve
.Sp
Calculate the square root of \f(CW$x\fR.
.IP \fBbroot()\fR 4
.IX Item "broot()"
.Vb 1
\&    $x\->broot($n);
.Ve
.Sp
Calculate the N'th root of \f(CW$x\fR.
.IP \fBbadd()\fR 4
.IX Item "badd()"
.Vb 1
\&    $x\->badd($y);
.Ve
.Sp
Adds \f(CW$y\fR to \f(CW$x\fR and returns the result.
.IP \fBbmul()\fR 4
.IX Item "bmul()"
.Vb 1
\&    $x\->bmul($y);
.Ve
.Sp
Multiplies \f(CW$y\fR to \f(CW$x\fR and returns the result.
.IP \fBbsub()\fR 4
.IX Item "bsub()"
.Vb 1
\&    $x\->bsub($y);
.Ve
.Sp
Subtracts \f(CW$y\fR from \f(CW$x\fR and returns the result.
.IP \fBbdiv()\fR 4
.IX Item "bdiv()"
.Vb 2
\&    $q = $x\->bdiv($y);
\&    ($q, $r) = $x\->bdiv($y);
.Ve
.Sp
In scalar context, divides \f(CW$x\fR by \f(CW$y\fR and returns the result. In list context,
does floored division (F\-division), returning an integer \f(CW$q\fR and a remainder \f(CW$r\fR
so that \f(CW$x\fR = \f(CW$q\fR * \f(CW$y\fR + \f(CW$r\fR. The remainer (modulo) is equal to what is returned
by \f(CW\*(C`$x\->bmod($y)\*(C'\fR.
.IP \fBbinv()\fR 4
.IX Item "binv()"
.Vb 1
\&    $x\->binv();
.Ve
.Sp
Inverse of \f(CW$x\fR.
.IP \fBbdec()\fR 4
.IX Item "bdec()"
.Vb 1
\&    $x\->bdec();
.Ve
.Sp
Decrements \f(CW$x\fR by 1 and returns the result.
.IP \fBbinc()\fR 4
.IX Item "binc()"
.Vb 1
\&    $x\->binc();
.Ve
.Sp
Increments \f(CW$x\fR by 1 and returns the result.
.IP \fBcopy()\fR 4
.IX Item "copy()"
.Vb 1
\&    my $z = $x\->copy();
.Ve
.Sp
Makes a deep copy of the object.
.Sp
Please see the documentation in Math::BigInt for further details.
.IP \fBbstr()\fR/\fBbsstr()\fR 4
.IX Item "bstr()/bsstr()"
.Vb 3
\&    my $x = Math::BigRat\->new(\*(Aq8/4\*(Aq);
\&    print $x\->bstr(), "\en";             # prints 1/2
\&    print $x\->bsstr(), "\en";            # prints 1/2
.Ve
.Sp
Return a string representing this object.
.IP \fBbcmp()\fR 4
.IX Item "bcmp()"
.Vb 1
\&    $x\->bcmp($y);
.Ve
.Sp
Compares \f(CW$x\fR with \f(CW$y\fR and takes the sign into account.
Returns \-1, 0, 1 or undef.
.IP \fBbacmp()\fR 4
.IX Item "bacmp()"
.Vb 1
\&    $x\->bacmp($y);
.Ve
.Sp
Compares \f(CW$x\fR with \f(CW$y\fR while ignoring their sign. Returns \-1, 0, 1 or undef.
.IP \fBbeq()\fR 4
.IX Item "beq()"
.Vb 1
\&    $x \-> beq($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is equal to \f(CW$y\fR, and false otherwise.
.IP \fBbne()\fR 4
.IX Item "bne()"
.Vb 1
\&    $x \-> bne($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is not equal to \f(CW$y\fR, and false otherwise.
.IP \fBblt()\fR 4
.IX Item "blt()"
.Vb 1
\&    $x \-> blt($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is equal to \f(CW$y\fR, and false otherwise.
.IP \fBble()\fR 4
.IX Item "ble()"
.Vb 1
\&    $x \-> ble($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is less than or equal to \f(CW$y\fR, and false
otherwise.
.IP \fBbgt()\fR 4
.IX Item "bgt()"
.Vb 1
\&    $x \-> bgt($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is greater than \f(CW$y\fR, and false otherwise.
.IP \fBbge()\fR 4
.IX Item "bge()"
.Vb 1
\&    $x \-> bge($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is greater than or equal to \f(CW$y\fR, and false
otherwise.
.IP \fBblsft()\fR/\fBbrsft()\fR 4
.IX Item "blsft()/brsft()"
Used to shift numbers left/right.
.Sp
Please see the documentation in Math::BigInt for further details.
.IP \fBband()\fR 4
.IX Item "band()"
.Vb 1
\&    $x\->band($y);               # bitwise and
.Ve
.IP \fBbior()\fR 4
.IX Item "bior()"
.Vb 1
\&    $x\->bior($y);               # bitwise inclusive or
.Ve
.IP \fBbxor()\fR 4
.IX Item "bxor()"
.Vb 1
\&    $x\->bxor($y);               # bitwise exclusive or
.Ve
.IP \fBbnot()\fR 4
.IX Item "bnot()"
.Vb 1
\&    $x\->bnot();                 # bitwise not (two\*(Aqs complement)
.Ve
.IP \fBbpow()\fR 4
.IX Item "bpow()"
.Vb 1
\&    $x\->bpow($y);
.Ve
.Sp
Compute \f(CW$x\fR ** \f(CW$y\fR.
.Sp
Please see the documentation in Math::BigInt for further details.
.IP \fBblog()\fR 4
.IX Item "blog()"
.Vb 1
\&    $x\->blog($base, $accuracy);         # logarithm of x to the base $base
.Ve
.Sp
If \f(CW$base\fR is not defined, Euler's number (e) is used:
.Sp
.Vb 1
\&    print $x\->blog(undef, 100);         # log(x) to 100 digits
.Ve
.IP \fBbexp()\fR 4
.IX Item "bexp()"
.Vb 1
\&    $x\->bexp($accuracy);        # calculate e ** X
.Ve
.Sp
Calculates two integers A and B so that A/B is equal to \f(CW\*(C`e ** $x\*(C'\fR, where \f(CW\*(C`e\*(C'\fR is
Euler's number.
.Sp
This method was added in v0.20 of Math::BigRat (May 2007).
.Sp
See also \f(CWblog()\fR.
.IP \fBbnok()\fR 4
.IX Item "bnok()"
.Vb 1
\&    $x\->bnok($y);               # x over y (binomial coefficient n over k)
.Ve
.Sp
Calculates the binomial coefficient n over k, also called the "choose"
function. The result is equivalent to:
.Sp
.Vb 3
\&    ( n )      n!
\&    | \- |  = \-\-\-\-\-\-\-
\&    ( k )    k!(n\-k)!
.Ve
.Sp
This method was added in v0.20 of Math::BigRat (May 2007).
.IP \fBconfig()\fR 4
.IX Item "config()"
.Vb 2
\&    Math::BigRat\->config("trap_nan" => 1);      # set
\&    $accu = Math::BigRat\->config("accuracy");   # get
.Ve
.Sp
Set or get configuration parameter values. Read-only parameters are marked as
RO. Read-write parameters are marked as RW. The following parameters are
supported.
.Sp
.Vb 10
\&    Parameter       RO/RW   Description
\&                            Example
\&    ============================================================
\&    lib             RO      Name of the math backend library
\&                            Math::BigInt::Calc
\&    lib_version     RO      Version of the math backend library
\&                            0.30
\&    class           RO      The class of config you just called
\&                            Math::BigRat
\&    version         RO      version number of the class you used
\&                            0.10
\&    upgrade         RW      To which class numbers are upgraded
\&                            undef
\&    downgrade       RW      To which class numbers are downgraded
\&                            undef
\&    precision       RW      Global precision
\&                            undef
\&    accuracy        RW      Global accuracy
\&                            undef
\&    round_mode      RW      Global round mode
\&                            even
\&    div_scale       RW      Fallback accuracy for div, sqrt etc.
\&                            40
\&    trap_nan        RW      Trap NaNs
\&                            undef
\&    trap_inf        RW      Trap +inf/\-inf
\&                            undef
.Ve
.SH "NUMERIC LITERALS"
.IX Header "NUMERIC LITERALS"
After \f(CW\*(C`use Math::BigRat \*(Aq:constant\*(Aq\*(C'\fR all numeric literals in the given scope
are converted to \f(CW\*(C`Math::BigRat\*(C'\fR objects. This conversion happens at compile
time. Every non-integer is convert to a NaN.
.PP
For example,
.PP
.Vb 1
\&    perl \-MMath::BigRat=:constant \-le \*(Aqprint 2**150\*(Aq
.Ve
.PP
prints the exact value of \f(CW\*(C`2**150\*(C'\fR. Note that without conversion of constants
to objects the expression \f(CW\*(C`2**150\*(C'\fR is calculated using Perl scalars, which
leads to an inaccurate result.
.PP
Please note that strings are not affected, so that
.PP
.Vb 1
\&    use Math::BigRat qw/:constant/;
\&
\&    $x = "1234567890123456789012345678901234567890"
\&            + "123456789123456789";
.Ve
.PP
does give you what you expect. You need an explicit Math::BigRat\->\fBnew()\fR around
at least one of the operands. You should also quote large constants to prevent
loss of precision:
.PP
.Vb 1
\&    use Math::BigRat;
\&
\&    $x = Math::BigRat\->new("1234567889123456789123456789123456789");
.Ve
.PP
Without the quotes Perl first converts the large number to a floating point
constant at compile time, and then converts the result to a Math::BigRat object
at run time, which results in an inaccurate result.
.SS "Hexadecimal, octal, and binary floating point literals"
.IX Subsection "Hexadecimal, octal, and binary floating point literals"
Perl (and this module) accepts hexadecimal, octal, and binary floating point
literals, but use them with care with Perl versions before v5.32.0, because some
versions of Perl silently give the wrong result. Below are some examples of
different ways to write the number decimal 314.
.PP
Hexadecimal floating point literals:
.PP
.Vb 3
\&    0x1.3ap+8         0X1.3AP+8
\&    0x1.3ap8          0X1.3AP8
\&    0x13a0p\-4         0X13A0P\-4
.Ve
.PP
Octal floating point literals (with "0" prefix):
.PP
.Vb 3
\&    01.164p+8         01.164P+8
\&    01.164p8          01.164P8
\&    011640p\-4         011640P\-4
.Ve
.PP
Octal floating point literals (with "0o" prefix) (requires v5.34.0):
.PP
.Vb 3
\&    0o1.164p+8        0O1.164P+8
\&    0o1.164p8         0O1.164P8
\&    0o11640p\-4        0O11640P\-4
.Ve
.PP
Binary floating point literals:
.PP
.Vb 3
\&    0b1.0011101p+8    0B1.0011101P+8
\&    0b1.0011101p8     0B1.0011101P8
\&    0b10011101000p\-2  0B10011101000P\-2
.Ve
.SH BUGS
.IX Header "BUGS"
Please report any bugs or feature requests to
\&\f(CW\*(C`bug\-math\-bigrat at rt.cpan.org\*(C'\fR, or through the web interface at
<https://rt.cpan.org/Ticket/Create.html?Queue=Math\-BigRat>
(requires login).
We will be notified, and then you'll automatically be notified of progress on
your bug as I make changes.
.SH SUPPORT
.IX Header "SUPPORT"
You can find documentation for this module with the perldoc command.
.PP
.Vb 1
\&    perldoc Math::BigRat
.Ve
.PP
You can also look for information at:
.IP \(bu 4
GitHub
.Sp
<https://github.com/pjacklam/p5\-Math\-BigRat>
.IP \(bu 4
RT: CPAN's request tracker
.Sp
<https://rt.cpan.org/Dist/Display.html?Name=Math\-BigRat>
.IP \(bu 4
MetaCPAN
.Sp
<https://metacpan.org/release/Math\-BigRat>
.IP \(bu 4
CPAN Testers Matrix
.Sp
<http://matrix.cpantesters.org/?dist=Math\-BigRat>
.IP \(bu 4
CPAN Ratings
.Sp
<https://cpanratings.perl.org/dist/Math\-BigRat>
.SH LICENSE
.IX Header "LICENSE"
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
bigrat, Math::BigFloat and Math::BigInt as well as the backends
Math::BigInt::FastCalc, Math::BigInt::GMP, and Math::BigInt::Pari.
.SH AUTHORS
.IX Header "AUTHORS"
.IP \(bu 4
Tels <http://bloodgate.com/> 2001\-2009.
.IP \(bu 4
Maintained by Peter John Acklam <pjacklam@gmail.com> 2011\-

Youez - 2016 - github.com/yon3zu
LinuXploit