JFIFXX    $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222"4 ,PG"Z_4˷kjزZ,F+_z,© zh6٨icfu#ډb_N?wQ5-~I8TK<5oIv-k_U_~bMdӜUHh?]EwQk{_}qFW7HTՑYF?_'ϔ_Ջt=||I 6έ"D/[k9Y8ds|\Ҿp6Ҵ].6znopM[mei$[soᘨ˸ nɜG-ĨUycP3.DBli;hjx7Z^NhN3u{:jx힞#M&jL P@_ P&o89@Sz6t7#Oߋ s}YfTlmrZ)'Nk۞pw\Tȯ?8`Oi{wﭹW[r Q4F׊3m&L=h3z~#\l :F,j@ ʱwQT8"kJO6֚l}R>ډK]y&p}b;N1mr$|7>e@BTM*-iHgD) Em|ؘbҗaҾt4oG*oCNrPQ@z,|?W[0:n,jWiEW$~/hp\?{(0+Y8rΟ+>S-SVN;}s?. w9˟<Mq4Wv'{)01mBVW[8/< %wT^5b)iM pgN&ݝVO~qu9 !J27$O-! :%H ـyΠM=t{!S oK8txA& j0 vF Y|y ~6@c1vOpIg4lODL Rcj_uX63?nkWyf;^*B @~a`Eu+6L.ü>}y}_O6͐:YrGXkGl^w~㒶syIu! W XN7BVO!X2wvGRfT#t/?%8^WaTGcLMI(J1~8?aT ]ASE(*E} 2#I/׍qz^t̔bYz4xt){ OH+(EA&NXTo"XC')}Jzp ~5}^+6wcQ|LpdH}(.|kc4^"Z?ȕ a<L!039C EuCFEwç ;n?*oB8bʝ'#RqfM}7]s2tcS{\icTx;\7KPʇ Z O-~c>"?PEO8@8GQgaՎ󁶠䧘_%#r>1zaebqcPѵn#L =׀t L7`VA{C:ge@w1 Xp3c3ġpM"'-@n4fGB3DJ8[JoߐgK)ƛ$ 83+ 6ʻ SkI*KZlT _`?KQKdB`s}>`*>,*@JdoF*弝O}ks]yߘc1GV<=776qPTtXԀ!9*44Tހ3XΛex46YD  BdemDa\_l,G/֌7Y](xTt^%GE4}bTڹ;Y)BQu>J/J ⮶.XԄjݳ+Ed r5_D1 o Bx΢#<W8R6@gM. drD>(otU@x=~v2 ӣdoBd3eO6㣷ݜ66YQz`S{\P~z m5{J/L1xO\ZFu>ck#&:`$ai>2ΔloF[hlEܺΠk:)` $[69kOw\|8}ބ:񶐕IA1/=2[,!.}gN#ub ~݊}34qdELc$"[qU硬g^%B zrpJru%v\h1Yne`ǥ:gpQM~^Xi `S:V29.PV?Bk AEvw%_9CQwKekPؠ\;Io d{ ߞoc1eP\ `E=@KIRYK2NPlLɀ)&eB+ь( JTx_?EZ }@ 6U뙢طzdWIn` D噥[uV"G&Ú2g}&m?ċ"Om# {ON"SXNeysQ@FnVgdX~nj]J58up~.`r\O,ư0oS _Ml4kv\JSdxSW<AeIX$Iw:Sy›R9Q[,5;@]%u@ *rolbI  +%m:͇ZVủθau,RW33 dJeTYE.Mϧ-oj3+yy^cVO9NV\nd1 !͕_)av;թMlWR1)ElP;yوÏu 3k5Pr6<⒲l!˞*u־n!l:UNW %Chx8vL'X@*)̮ˍ D-M+JUkvK+x8cY?Ԡ~3mo|u@[XeYC\Kpx8oCC&N~3-H MXsu<`~"WL$8ξ3a)|:@m\^`@ҷ)5p+6p%i)P Mngc#0AruzRL+xSS?ʮ}()#tmˇ!0}}y$6Lt;$ʳ{^6{v6ķܰgVcnn ~zx«,2u?cE+ȘH؎%Za)X>uWTzNyosFQƤ$*&LLXL)1" LeOɟ9=:tZcŽY?ӭVwv~,Yrۗ|yGaFC.+ v1fήJ]STBn5sW}y$~z'c 8  ,! pVNSNNqy8z˱A4*'2n<s^ǧ˭PJޮɏUGLJ*#i}K%,)[z21z ?Nin1?TIR#m-1lA`fT5+ܐcq՝ʐ,3f2Uեmab#ŠdQy>\)SLYw#.ʑf ,"+w~N'cO3FN<)j&,- љ֊_zSTǦw>?nU仆Ve0$CdrP m׈eXmVu L.bֹ [Դaզ*\y8Է:Ez\0KqC b̘cөQ=0YsNS.3.Oo:#v7[#߫ 5܎LEr49nCOWlG^0k%;YߝZǓ:S#|}y,/kLd TA(AI$+I3;Y*Z}|ӧOdv..#:nf>>ȶITX 8y"dR|)0=n46ⲑ+ra ~]R̲c?6(q;5% |uj~z8R=XIV=|{vGj\gcqz؋%Mߍ1y#@f^^>N#x#۹6Y~?dfPO{P4Vu1E1J *|%JN`eWuzk M6q t[ gGvWIGu_ft5j"Y:Tɐ*; e54q$C2d} _SL#mYpO.C;cHi#֩%+) ӍƲVSYźg |tj38r|V1#;.SQA[S#`n+$$I P\[@s(EDzP])8G#0B[ىXIIq<9~[Z멜Z⊔IWU&A>P~#dp]9 "cP Md?٥Ifتuk/F9c*9Ǎ:ØFzn*@|Iށ9N3{'['ͬҲ4#}!V Fu,,mTIkv C7vB6kT91*l '~ƞFlU'M ][ΩũJ_{iIn$L jOdxkza۪#EClx˘oVɞljr)/,߬hL#^Lф,íMƁe̩NBLiLq}(q6IçJ$WE$:=#(KBzђ xlx?>Պ+>W,Ly!_DŌlQ![ SJ1ƐY}b,+Loxɓ)=yoh@꥟/Iѭ=Py9 ۍYӘe+pJnϱ?V\SO%(t =?MR[Șd/ nlB7j !;ӥ/[-A>dNsLj ,ɪv=1c.SQO3UƀܽE̻9GϷD7(}Ävӌ\y_0[w <΍>a_[0+LF.޺f>oNTq;y\bՃyjH<|q-eɏ_?_9+PHp$[uxK wMwNی'$Y2=qKBP~Yul:[<F12O5=d]Ysw:ϮEj,_QXz`H1,#II dwrP˂@ZJVy$\y{}^~[:NߌUOdؾe${p>G3cĖlʌ ת[`ϱ-WdgIig2 }s ؤ(%#sS@~3XnRG~\jc3vӍLM[JBTs3}jNʖW;7ç?=XF=-=qߚ#='c7ڑWI(O+=:uxqe2zi+kuGR0&eniT^J~\jyp'dtGsO39* b#Ɋ p[BwsT>d4ۧsnvnU_~,vƜJ1s QIz)(lv8MU=;56Gs#KMP=LvyGd}VwWBF'à ?MHUg2 !p7Qjڴ=ju JnA suMeƆҔ!)'8Ϣٔޝ(Vpצ֖d=ICJǠ{qkԭ߸i@Ku|p=..*+xz[Aqġ#s2aƊRR)*HRsi~a &fMP-KL@ZXy'x{}Zm+:)) IJ-iu ܒH'L(7yGӜq j 6ߌg1go,kرtY?W,pefOQS!K۟cҒA|սj>=⬒˧L[ ߿2JaB~Ru:Q] 0H~]7ƼI(}cq 'ήETq?fabӥvr )o-Q_'ᴎoK;Vo%~OK *bf:-ťIR`B5!RB@ï u ̯e\_U_ gES3QTaxU<~c?*#]MW,[8Oax]1bC|踤Plw5V%){t<d50iXSUm:Z┵i"1^B-PhJ&)O*DcWvM)}Pܗ-q\mmζZ-l@}aE6F@&Sg@ݚM ȹ 4#p\HdYDoH"\..RBHz_/5˘6KhJRPmƶim3,#ccoqa)*PtRmk7xDE\Y閣_X<~)c[[BP6YqS0%_;Àv~| VS؇ 'O0F0\U-d@7SJ*z3nyPOm~P3|Yʉr#CSN@ ƮRN)r"C:: #qbY. 6[2K2uǦHYRQMV G$Q+.>nNHq^ qmMVD+-#*U̒ p욳u:IBmPV@Or[b= 1UE_NmyKbNOU}the`|6֮P>\2PVIDiPO;9rmAHGWS]J*_G+kP2KaZH'KxWMZ%OYDRc+o?qGhmdSoh\D|:WUAQc yTq~^H/#pCZTI1ӏT4"ČZ}`w#*,ʹ 0i課Om*da^gJ݅{le9uF#Tֲ̲ٞC"qߍ ոޑo#XZTp@ o8(jdxw],f`~|,s^f1t|m򸄭/ctr5s79Q4H1꠲BB@l9@C+wpxu£Yc9?`@#omHs2)=2.ljg9$YS%*LRY7Z,*=䷘$armoϰUW.|rufIGwtZwo~5 YյhO+=8fF)W7L9lM̘·Y֘YLf큹pRF99.A "wz=E\Z'a 2Ǚ#;'}G*l^"q+2FQ hjkŦ${ޮ-T٭cf|3#~RJt$b(R(rdx >U b&9,>%E\ Άe$'q't*אެb-|dSBOO$R+H)܎K1m`;J2Y~9Og8=vqD`K[F)k[1m޼cn]skz$@)!I x՝"v9=ZA=`Ɠi :E)`7vI}dYI_ o:obo 3Q&D&2= Ά;>hy.*ⅥSӬ+q&j|UƧ}J0WW< ۋS)jQRjƯrN)Gű4Ѷ(S)Ǣ8iW52No˓ ۍ%5brOnL;n\G=^UdI8$&h'+(cȁ߫klS^cƗjԌEꭔgFȒ@}O*;evWVYJ\]X'5ղkFb 6Ro՜mi Ni>J?lPmU}>_Z&KKqrIDՉ~q3fL:Se>E-G{L6pe,8QIhaXaUA'ʂs+טIjP-y8ۈZ?J$WP Rs]|l(ԓsƊio(S0Y 8T97.WiLc~dxcE|2!XKƘਫ਼$((6~|d9u+qd^389Y6L.I?iIq9)O/뚅OXXVZF[یgQLK1RҖr@v#XlFНyS87kF!AsM^rkpjPDyS$Nqnxҍ!Uf!ehi2m`YI9r6 TFC}/y^Η5d'9A-J>{_l+`A['յϛ#w:݅%X}&PStQ"-\縵/$ƗhXb*yBS;Wջ_mcvt?2}1;qSdd~u:2k52R~z+|HE!)Ǟl7`0<,2*Hl-x^'_TVgZA'j ^2ΪN7t?w x1fIzC-ȖK^q;-WDvT78Z hK(P:Q- 8nZ܃e貾<1YT<,"6{/ ?͟|1:#gW>$dJdB=jf[%rE^il:BxSּ1հ,=*7 fcG#q eh?27,!7x6nLC4x},GeǝtC.vS F43zz\;QYC,6~;RYS/6|25vTimlv& nRh^ejRLGf? ۉҬܦƩ|Ȱ>3!viʯ>vオX3e_1zKȗ\qHS,EW[㺨uch⍸O}a>q6n6N6qN ! 1AQaq0@"2BRb#Pr3C`Scst$4D%Td ?Na3mCwxAmqmm$4n淿t'C"wzU=D\R+wp+YT&պ@ƃ3ޯ?AﶂaŘ@-Q=9Dռѻ@MVP܅G5fY6# ?0UQ,IX(6ڵ[DIMNލc&υj\XR|,4 jThAe^db#$]wOӪ1y%LYm뭛CUƃߜ}Cy1XνmF8jI]HۺиE@Ii;r8ӭVFՇ| &?3|xBMuSGe=Ӕ#BE5GY!z_eqр/W>|-Ci߇t1ޯќdR3ug=0 5[?#͏qcfH{ ?u=??ǯ}ZzhmΔBFTWPxs}G93 )gGR<>r h$'nchPBjJҧH -N1N?~}-q!=_2hcMlvY%UE@|vM2.Y[|y"EïKZF,ɯ?,q?vM 80jx";9vk+ ֧ ȺU?%vcVmA6Qg^MA}3nl QRNl8kkn'(M7m9وq%ޟ*h$Zk"$9: ?U8Sl,,|ɒxH(ѷGn/Q4PG%Ա8N! &7;eKM749R/%lc>x;>C:th?aKXbheᜋ^$Iհ hr7%F$EFdt5+(M6tÜUU|zW=aTsTgdqPQb'm1{|YXNb P~F^F:k6"j! Ir`1&-$Bevk:y#ywI0x=D4tUPZHڠ底taP6b>xaQ# WeFŮNjpJ* mQN*I-*ȩFg3 5Vʊɮa5FO@{NX?H]31Ri_uѕ 0 F~:60p͈SqX#a5>`o&+<2D: ڝ$nP*)N|yEjF5ټeihyZ >kbHavh-#!Po=@k̆IEN@}Ll?jO߭ʞQ|A07xwt!xfI2?Z<ץTcUj]陎Ltl }5ϓ$,Omˊ;@OjEj(ا,LXLOЦ90O .anA7j4 W_ٓzWjcBy՗+EM)dNg6y1_xp$Lv:9"zpʙ$^JԼ*ϭo=xLj6Ju82AH3$ٕ@=Vv]'qEz;I˼)=ɯx /W(Vp$ mu񶤑OqˎTr㠚xsrGCbypG1ߠw e8$⿄/M{*}W]˷.CK\ުx/$WPwr |i&}{X >$-l?-zglΆ(FhvS*b߲ڡn,|)mrH[a3ר[13o_U3TC$(=)0kgP u^=4 WYCҸ:vQרXàtkm,t*^,}D* "(I9R>``[~Q]#afi6l86:,ssN6j"A4IuQ6E,GnHzSHOuk5$I4ؤQ9@CwpBGv[]uOv0I4\yQѸ~>Z8Taqޣ;za/SI:ܫ_|>=Z8:SUIJ"IY8%b8H:QO6;7ISJҌAά3>cE+&jf$eC+z;V rʺmyeaQf&6ND.:NTvm<- uǝ\MvZYNNT-A>jr!SnO 13Ns%3D@`ܟ 1^c< aɽ̲Xë#w|ycW=9I*H8p^(4՗karOcWtO\ƍR8'KIQ?5>[}yUײ -h=% qThG2)"ו3]!kB*pFDlA,eEiHfPs5H:Փ~H0DتDIhF3c2E9H5zԑʚiX=:mxghd(v׊9iSOd@0ڽ:p5h-t&Xqӕ,ie|7A2O%PEhtjY1wЃ!  ࢽMy7\a@ţJ 4ȻF@o̒?4wx)]P~u57X 9^ܩU;Iꭆ 5 eK27({|Y׎ V\"Z1 Z}(Ǝ"1S_vE30>p; ΝD%xW?W?vo^Vidr[/&>~`9Why;R ;;ɮT?r$g1KACcKl:'3 cﳯ*"t8~l)m+U,z`(>yJ?h>]vЍG*{`;y]IT ;cNUfo¾h/$|NS1S"HVT4uhǜ]v;5͠x'C\SBplh}N ABx%ޭl/Twʽ]D=Kžr㻠l4SO?=k M: cCa#ha)ѐxcsgPiG{+xQI= zԫ+ 8"kñj=|c yCF/*9жh{ ?4o kmQNx;Y4膚aw?6>e]Qr:g,i"ԩA*M7qB?ӕFhV25r[7 Y }LR}*sg+xr2U=*'WSZDW]WǞ<叓{$9Ou4y90-1'*D`c^o?(9uݐ'PI& fJݮ:wSjfP1F:X H9dԯ˝[_54 }*;@ܨ ðynT?ןd#4rGͨH1|-#MrS3G3).᧏3vz֑r$G"`j 1tx0<ƆWh6y6,œGagAyb)hDß_mü gG;evݝnQ C-*oyaMI><]obD":GA-\%LT8c)+y76oQ#*{(F⽕y=rW\p۩cA^e6KʐcVf5$'->ՉN"F"UQ@fGb~#&M=8טJNu9D[̤so~ G9TtW^g5y$bY'سǴ=U-2 #MCt(i lj@Q 5̣i*OsxKf}\M{EV{υƇ);HIfeLȣr2>WIȂ6ik 5YOxȺ>Yf5'|H+98pjn.OyjY~iw'l;s2Y:'lgꥴ)o#'SaaKZ m}`169n"xI *+ }FP"l45'ZgE8?[X7(.Q-*ތL@̲v.5[=t\+CNܛ,gSQnH}*FG16&:t4ُ"Ạ$b |#rsaT ]ӽDP7ո0y)e$ٕvIh'QEAm*HRI=: 4牢) %_iNݧl] NtGHL ɱg<1V,J~ٹ"KQ 9HS9?@kr;we݁]I!{ @G["`J:n]{cAEVʆ#U96j#Ym\qe4hB7Cdv\MNgmAyQL4uLjj9#44tl^}LnR!t±]rh6ٍ>yҏNfU  Fm@8}/ujb9he:AyծwGpΧh5l}3p468)Udc;Us/֔YX1O2uqs`hwgr~{ RmhN؎*q 42*th>#E#HvOq}6e\,Wk#Xb>p}դ3T5†6[@Py*n|'f֧>lư΂̺SU'*qp_SM 'c6m ySʨ;MrƋmKxo,GmPAG:iw9}M(^V$ǒѽ9| aJSQarB;}ٻ֢2%Uc#gNaݕ'v[OY'3L3;,p]@S{lsX'cjwk'a.}}& dP*bK=ɍ!;3ngΊUߴmt'*{,=SzfD Ako~Gaoq_mi}#mPXhύmxǍ΂巿zfQc|kc?WY$_Lvl߶c`?ljݲˏ!V6UЂ(A4y)HpZ_x>eR$/`^'3qˏ-&Q=?CFVR DfV9{8gnh(P"6[D< E~0<@`G6Hгcc cK.5DdB`?XQ2ٿyqo&+1^ DW0ꊩG#QnL3c/x 11[yxპCWCcUĨ80me4.{muI=f0QRls9f9~fǨa"@8ȁQ#cicG$Gr/$W(WV"m7[mAmboD j۳ l^kh׽ # iXnveTka^Y4BNĕ0 !01@Q"2AaPq3BR?@4QT3,㺠W[=JKϞ2r^7vc:9 EߴwS#dIxu:Hp9E! V 2;73|F9Y*ʬFDu&y؟^EAA(ɩ^GV:ݜDy`Jr29ܾ㝉[E;FzxYGUeYC v-txIsםĘqEb+P\ :>iC';k|zرny]#ǿbQw(r|ӹs[D2v-%@;8<a[\o[ϧwI!*0krs)[J9^ʜp1) "/_>o<1AEy^C`x1'ܣnps`lfQ):lb>MejH^?kl3(z:1ŠK&?Q~{ٺhy/[V|6}KbXmn[-75q94dmc^h X5G-}دBޟ |rtMV+]c?-#ڛ^ǂ}LkrOu>-Dry D?:ޞUǜ7V?瓮"#rչģVR;n/_ ؉vݶe5db9/O009G5nWJpA*r9>1.[tsFnQ V 77R]ɫ8_0<՜IFu(v4Fk3E)N:yڮeP`1}$WSJSQNjٺ޵#lј(5=5lǏmoWv-1v,Wmn߀$x_DȬ0¤#QR[Vkzmw"9ZG7'[=Qj8R?zf\a=OU*oBA|G254 p.w7  &ξxGHp B%$gtЏ򤵍zHNuЯ-'40;_3 !01"@AQa2Pq#3BR?ʩcaen^8F<7;EA{EÖ1U/#d1an.1ě0ʾRh|RAo3m3 % 28Q yφHTo7lW>#i`qca m,B-j݋'mR1Ήt>Vps0IbIC.1Rea]H64B>o]($Bma!=?B KǾ+Ծ"nK*+[T#{EJSQs5:U\wĐf3܆&)IԆwE TlrTf6Q|Rh:[K zc֧GC%\_a84HcObiؖV7H )*ģK~Xhչ04?0 E<}3#u? |gS6ꊤ|I#Hڛ աwX97Ŀ%SLy6č|Fa 8b$sקhb9RAu7˨pČ_\*w묦F 4D~f|("mNKiS>$d7SlA/²SL|6N}S˯g]6; #. 403WebShell
403Webshell
Server IP : 173.199.190.172  /  Your IP : 216.73.216.167
Web Server : Apache
System : Linux chs1.nescrow.com.ng 3.10.0-1160.119.1.el7.x86_64 #1 SMP Tue Jun 4 14:43:51 UTC 2024 x86_64
User : oysipaoygov ( 1026)
PHP Version : 5.6.40
Disable Function : exec,passthru,shell_exec,system
MySQL : ON  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /usr/local/lp/sonarperl/man/man3/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/local/lp/sonarperl/man/man3/Math::BigInt::Lib.3
.\" -*- mode: troff; coding: utf-8 -*-
.\" Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
.ie n \{\
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds C`
.    ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
.    if \nF \{\
.        de IX
.        tm Index:\\$1\t\\n%\t"\\$2"
..
.        if !\nF==2 \{\
.            nr % 0
.            nr F 2
.        \}
.    \}
.\}
.rr rF
.\" ========================================================================
.\"
.IX Title "Math::BigInt::Lib 3"
.TH Math::BigInt::Lib 3 2023-05-26 "perl v5.38.0" "Perl Programmers Reference Guide"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH NAME
Math::BigInt::Lib \- virtual parent class for Math::BigInt libraries
.SH SYNOPSIS
.IX Header "SYNOPSIS"
.Vb 1
\&    # In the backend library for Math::BigInt et al.
\&
\&    package Math::BigInt::MyBackend;
\&
\&    use Math::BigInt::Lib;
\&    our @ISA = qw< Math::BigInt::Lib >;
\&
\&    sub _new { ... }
\&    sub _str { ... }
\&    sub _add { ... }
\&    str _sub { ... }
\&    ...
\&
\&    # In your main program.
\&
\&    use Math::BigInt lib => \*(AqMyBackend\*(Aq;
.Ve
.SH DESCRIPTION
.IX Header "DESCRIPTION"
This module provides support for big integer calculations. It is not intended
to be used directly, but rather as a parent class for backend libraries used by
Math::BigInt, Math::BigFloat, Math::BigRat, and related modules.
.PP
Other backend libraries include Math::BigInt::Calc, Math::BigInt::FastCalc,
Math::BigInt::GMP, and Math::BigInt::Pari.
.PP
In order to allow for multiple big integer libraries, Math::BigInt was
rewritten to use a plug-in library for core math routines. Any module which
conforms to the API can be used by Math::BigInt by using this in your program:
.PP
.Vb 1
\&        use Math::BigInt lib => \*(Aqlibname\*(Aq;
.Ve
.PP
\&'libname' is either the long name, like 'Math::BigInt::Pari', or only the short
version, like 'Pari'.
.SS "General Notes"
.IX Subsection "General Notes"
A library only needs to deal with unsigned big integers. Testing of input
parameter validity is done by the caller, so there is no need to worry about
underflow (e.g., in \f(CW_sub()\fR and \f(CW_dec()\fR) or about division by zero (e.g.,
in \f(CW_div()\fR and \f(CW_mod()\fR)) or similar cases.
.PP
Some libraries use methods that don't modify their argument, and some libraries
don't even use objects, but rather unblessed references. Because of this,
liberary methods are always called as class methods, not instance methods:
.PP
.Vb 3
\&    $x = Class \-> method($x, $y);     # like this
\&    $x = $x \-> method($y);            # not like this ...
\&    $x \-> method($y);                 # ... or like this
.Ve
.PP
And with boolean methods
.PP
.Vb 2
\&    $bool = Class \-> method($x, $y);  # like this
\&    $bool = $x \-> method($y);         # not like this
.Ve
.PP
Return values are always objects, strings, Perl scalars, or true/false for
comparison routines.
.PP
\fIAPI version\fR
.IX Subsection "API version"
.IP CLASS\->\fBapi_version()\fR 4
.IX Item "CLASS->api_version()"
This method is no longer used and can be omitted. Methods that are not
implemented by a subclass will be inherited from this class.
.PP
\fIConstructors\fR
.IX Subsection "Constructors"
.PP
The following methods are mandatory: \fB_new()\fR, \fB_str()\fR, \fB_add()\fR, and \fB_sub()\fR.
However, computations will be very slow without \fB_mul()\fR and \fB_div()\fR.
.IP CLASS\->_new(STR) 4
.IX Item "CLASS->_new(STR)"
Convert a string representing an unsigned decimal number to an object
representing the same number. The input is normalized, i.e., it matches
\&\f(CW\*(C`^(0|[1\-9]\ed*)$\*(C'\fR.
.IP CLASS\->\fB_zero()\fR 4
.IX Item "CLASS->_zero()"
Return an object representing the number zero.
.IP CLASS\->\fB_one()\fR 4
.IX Item "CLASS->_one()"
Return an object representing the number one.
.IP CLASS\->\fB_two()\fR 4
.IX Item "CLASS->_two()"
Return an object representing the number two.
.IP CLASS\->\fB_ten()\fR 4
.IX Item "CLASS->_ten()"
Return an object representing the number ten.
.IP CLASS\->_from_bin(STR) 4
.IX Item "CLASS->_from_bin(STR)"
Return an object given a string representing a binary number. The input has a
\&'0b' prefix and matches the regular expression \f(CW\*(C`^0[bB](0|1[01]*)$\*(C'\fR.
.IP CLASS\->_from_oct(STR) 4
.IX Item "CLASS->_from_oct(STR)"
Return an object given a string representing an octal number. The input has a
\&'0' prefix and matches the regular expression \f(CW\*(C`^0[1\-7]*$\*(C'\fR.
.IP CLASS\->_from_hex(STR) 4
.IX Item "CLASS->_from_hex(STR)"
Return an object given a string representing a hexadecimal number. The input
has a '0x' prefix and matches the regular expression
\&\f(CW\*(C`^0x(0|[1\-9a\-fA\-F][\eda\-fA\-F]*)$\*(C'\fR.
.IP CLASS\->_from_bytes(STR) 4
.IX Item "CLASS->_from_bytes(STR)"
Returns an object given a byte string representing the number. The byte string
is in big endian byte order, so the two-byte input string "\ex01\ex00" should
give an output value representing the number 256.
.IP "CLASS\->_from_base(STR, BASE, COLLSEQ)" 4
.IX Item "CLASS->_from_base(STR, BASE, COLLSEQ)"
Returns an object given a string STR, a base BASE, and a collation sequence
COLLSEQ. Each character in STR represents a numerical value identical to the
character's position in COLLSEQ. All characters in STR must be present in
COLLSEQ.
.Sp
If BASE is less than or equal to 94, and a collation sequence is not specified,
the following default collation sequence is used. It contains of all the 94
printable ASCII characters except space/blank:
.Sp
.Vb 7
\&    0123456789                  # ASCII  48 to  57
\&    ABCDEFGHIJKLMNOPQRSTUVWXYZ  # ASCII  65 to  90
\&    abcdefghijklmnopqrstuvwxyz  # ASCII  97 to 122
\&    !"#$%&\*(Aq()*+,\-./             # ASCII  33 to  47
\&    :;<=>?@                     # ASCII  58 to  64
\&    [\e]^_\`                      # ASCII  91 to  96
\&    {|}~                        # ASCII 123 to 126
.Ve
.Sp
If the default collation sequence is used, and the BASE is less than or equal
to 36, the letter case in STR is ignored.
.Sp
For instance, with base 3 and collation sequence "\-/|", the character "\-"
represents 0, "/" represents 1, and "|" represents 2. So if STR is "/|\-", the
output is 1 * 3**2 + 2 * 3**1 + 0 * 3**0 = 15.
.Sp
The following examples show standard binary, octal, decimal, and hexadecimal
conversion. All examples return 250.
.Sp
.Vb 4
\&    $x = $class \-> _from_base("11111010", 2)
\&    $x = $class \-> _from_base("372", 8)
\&    $x = $class \-> _from_base("250", 10)
\&    $x = $class \-> _from_base("FA", 16)
.Ve
.Sp
Some more examples, all returning 250:
.Sp
.Vb 6
\&    $x = $class \-> _from_base("100021", 3)
\&    $x = $class \-> _from_base("3322", 4)
\&    $x = $class \-> _from_base("2000", 5)
\&    $x = $class \-> _from_base("caaa", 5, "abcde")
\&    $x = $class \-> _from_base("42", 62)
\&    $x = $class \-> _from_base("2!", 94)
.Ve
.IP "CLASS\->_from_base_num(ARRAY, BASE)" 4
.IX Item "CLASS->_from_base_num(ARRAY, BASE)"
Returns an object given an array of values and a base. This method is
equivalent to \f(CW_from_base()\fR, but works on numbers in an array rather than
characters in a string. Unlike \f(CW_from_base()\fR, all input values may be
arbitrarily large.
.Sp
.Vb 2
\&    $x = $class \-> _from_base_num([1, 1, 0, 1], 2)    # $x is 13
\&    $x = $class \-> _from_base_num([3, 125, 39], 128)  # $x is 65191
.Ve
.PP
\fIMathematical functions\fR
.IX Subsection "Mathematical functions"
.IP "CLASS\->_add(OBJ1, OBJ2)" 4
.IX Item "CLASS->_add(OBJ1, OBJ2)"
Addition. Returns the result of adding OBJ2 to OBJ1.
.IP "CLASS\->_mul(OBJ1, OBJ2)" 4
.IX Item "CLASS->_mul(OBJ1, OBJ2)"
Multiplication. Returns the result of multiplying OBJ2 and OBJ1.
.IP "CLASS\->_div(OBJ1, OBJ2)" 4
.IX Item "CLASS->_div(OBJ1, OBJ2)"
Division. In scalar context, returns the quotient after dividing OBJ1 by OBJ2
and truncating the result to an integer. In list context, return the quotient
and the remainder.
.IP "CLASS\->_sub(OBJ1, OBJ2, FLAG)" 4
.IX Item "CLASS->_sub(OBJ1, OBJ2, FLAG)"
.PD 0
.IP "CLASS\->_sub(OBJ1, OBJ2)" 4
.IX Item "CLASS->_sub(OBJ1, OBJ2)"
.PD
Subtraction. Returns the result of subtracting OBJ2 by OBJ1. If \f(CW\*(C`flag\*(C'\fR is false
or omitted, OBJ1 might be modified. If \f(CW\*(C`flag\*(C'\fR is true, OBJ2 might be modified.
.IP "CLASS\->_sadd(OBJ1, SIGN1, OBJ2, SIGN2)" 4
.IX Item "CLASS->_sadd(OBJ1, SIGN1, OBJ2, SIGN2)"
Signed addition. Returns the result of adding OBJ2 with sign SIGN2 to OBJ1 with
sign SIGN1.
.Sp
.Vb 1
\&    ($obj3, $sign3) = $class \-> _sadd($obj1, $sign1, $obj2, $sign2);
.Ve
.IP "CLASS\->_ssub(OBJ1, SIGN1, OBJ2, SIGN2)" 4
.IX Item "CLASS->_ssub(OBJ1, SIGN1, OBJ2, SIGN2)"
Signed subtraction. Returns the result of subtracting OBJ2 with sign SIGN2 to
OBJ1 with sign SIGN1.
.Sp
.Vb 1
\&    ($obj3, $sign3) = $class \-> _sadd($obj1, $sign1, $obj2, $sign2);
.Ve
.IP CLASS\->_dec(OBJ) 4
.IX Item "CLASS->_dec(OBJ)"
Returns the result after decrementing OBJ by one.
.IP CLASS\->_inc(OBJ) 4
.IX Item "CLASS->_inc(OBJ)"
Returns the result after incrementing OBJ by one.
.IP "CLASS\->_mod(OBJ1, OBJ2)" 4
.IX Item "CLASS->_mod(OBJ1, OBJ2)"
Returns OBJ1 modulo OBJ2, i.e., the remainder after dividing OBJ1 by OBJ2.
.IP CLASS\->_sqrt(OBJ) 4
.IX Item "CLASS->_sqrt(OBJ)"
Returns the square root of OBJ, truncated to an integer.
.IP "CLASS\->_root(OBJ, N)" 4
.IX Item "CLASS->_root(OBJ, N)"
Returns the Nth root of OBJ, truncated to an integer.
.IP CLASS\->_fac(OBJ) 4
.IX Item "CLASS->_fac(OBJ)"
Returns the factorial of OBJ, i.e., the product of all positive integers up to
and including OBJ.
.IP CLASS\->_dfac(OBJ) 4
.IX Item "CLASS->_dfac(OBJ)"
Returns the double factorial of OBJ. If OBJ is an even integer, returns the
product of all positive, even integers up to and including OBJ, i.e.,
2*4*6*...*OBJ. If OBJ is an odd integer, returns the product of all positive,
odd integers, i.e., 1*3*5*...*OBJ.
.IP "CLASS\->_pow(OBJ1, OBJ2)" 4
.IX Item "CLASS->_pow(OBJ1, OBJ2)"
Returns OBJ1 raised to the power of OBJ2. By convention, 0**0 = 1.
.IP "CLASS\->_modinv(OBJ1, OBJ2)" 4
.IX Item "CLASS->_modinv(OBJ1, OBJ2)"
Returns the modular multiplicative inverse, i.e., return OBJ3 so that
.Sp
.Vb 1
\&    (OBJ3 * OBJ1) % OBJ2 = 1 % OBJ2
.Ve
.Sp
The result is returned as two arguments. If the modular multiplicative inverse
does not exist, both arguments are undefined. Otherwise, the arguments are a
number (object) and its sign ("+" or "\-").
.Sp
The output value, with its sign, must either be a positive value in the range
1,2,...,OBJ2\-1 or the same value subtracted OBJ2. For instance, if the input
arguments are objects representing the numbers 7 and 5, the method must either
return an object representing the number 3 and a "+" sign, since (3*7) % 5 = 1
% 5, or an object representing the number 2 and a "\-" sign, since (\-2*7) % 5 = 1
% 5.
.IP "CLASS\->_modpow(OBJ1, OBJ2, OBJ3)" 4
.IX Item "CLASS->_modpow(OBJ1, OBJ2, OBJ3)"
Returns the modular exponentiation, i.e., (OBJ1 ** OBJ2) % OBJ3.
.IP "CLASS\->_rsft(OBJ, N, B)" 4
.IX Item "CLASS->_rsft(OBJ, N, B)"
Returns the result after shifting OBJ N digits to thee right in base B. This is
equivalent to performing integer division by B**N and discarding the remainder,
except that it might be much faster.
.Sp
For instance, if the object \f(CW$obj\fR represents the hexadecimal number 0xabcde,
then \f(CW\*(C`_rsft($obj, 2, 16)\*(C'\fR returns an object representing the number 0xabc. The
"remainer", 0xde, is discarded and not returned.
.IP "CLASS\->_lsft(OBJ, N, B)" 4
.IX Item "CLASS->_lsft(OBJ, N, B)"
Returns the result after shifting OBJ N digits to the left in base B. This is
equivalent to multiplying by B**N, except that it might be much faster.
.IP "CLASS\->_log_int(OBJ, B)" 4
.IX Item "CLASS->_log_int(OBJ, B)"
Returns the logarithm of OBJ to base BASE truncted to an integer. This method
has two output arguments, the OBJECT and a STATUS. The STATUS is Perl scalar;
it is 1 if OBJ is the exact result, 0 if the result was truncted to give OBJ,
and undef if it is unknown whether OBJ is the exact result.
.IP "CLASS\->_gcd(OBJ1, OBJ2)" 4
.IX Item "CLASS->_gcd(OBJ1, OBJ2)"
Returns the greatest common divisor of OBJ1 and OBJ2.
.IP "CLASS\->_lcm(OBJ1, OBJ2)" 4
.IX Item "CLASS->_lcm(OBJ1, OBJ2)"
Return the least common multiple of OBJ1 and OBJ2.
.IP CLASS\->_fib(OBJ) 4
.IX Item "CLASS->_fib(OBJ)"
In scalar context, returns the nth Fibonacci number: \fB_fib\fR\|(0) returns 0, \fB_fib\fR\|(1)
returns 1, \fB_fib\fR\|(2) returns 1, \fB_fib\fR\|(3) returns 2 etc. In list context, returns
the Fibonacci numbers from F(0) to F(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
.IP CLASS\->_lucas(OBJ) 4
.IX Item "CLASS->_lucas(OBJ)"
In scalar context, returns the nth Lucas number: \fB_lucas\fR\|(0) returns 2, \fB_lucas\fR\|(1)
returns 1, \fB_lucas\fR\|(2) returns 3, etc. In list context, returns the Lucas numbers
from L(0) to L(n): 2, 1, 3, 4, 7, 11, 18, 29,47, 76, ...
.PP
\fIBitwise operators\fR
.IX Subsection "Bitwise operators"
.IP "CLASS\->_and(OBJ1, OBJ2)" 4
.IX Item "CLASS->_and(OBJ1, OBJ2)"
Returns bitwise and.
.IP "CLASS\->_or(OBJ1, OBJ2)" 4
.IX Item "CLASS->_or(OBJ1, OBJ2)"
Returns bitwise or.
.IP "CLASS\->_xor(OBJ1, OBJ2)" 4
.IX Item "CLASS->_xor(OBJ1, OBJ2)"
Returns bitwise exclusive or.
.IP "CLASS\->_sand(OBJ1, OBJ2, SIGN1, SIGN2)" 4
.IX Item "CLASS->_sand(OBJ1, OBJ2, SIGN1, SIGN2)"
Returns bitwise signed and.
.IP "CLASS\->_sor(OBJ1, OBJ2, SIGN1, SIGN2)" 4
.IX Item "CLASS->_sor(OBJ1, OBJ2, SIGN1, SIGN2)"
Returns bitwise signed or.
.IP "CLASS\->_sxor(OBJ1, OBJ2, SIGN1, SIGN2)" 4
.IX Item "CLASS->_sxor(OBJ1, OBJ2, SIGN1, SIGN2)"
Returns bitwise signed exclusive or.
.PP
\fIBoolean operators\fR
.IX Subsection "Boolean operators"
.IP CLASS\->_is_zero(OBJ) 4
.IX Item "CLASS->_is_zero(OBJ)"
Returns a true value if OBJ is zero, and false value otherwise.
.IP CLASS\->_is_one(OBJ) 4
.IX Item "CLASS->_is_one(OBJ)"
Returns a true value if OBJ is one, and false value otherwise.
.IP CLASS\->_is_two(OBJ) 4
.IX Item "CLASS->_is_two(OBJ)"
Returns a true value if OBJ is two, and false value otherwise.
.IP CLASS\->_is_ten(OBJ) 4
.IX Item "CLASS->_is_ten(OBJ)"
Returns a true value if OBJ is ten, and false value otherwise.
.IP CLASS\->_is_even(OBJ) 4
.IX Item "CLASS->_is_even(OBJ)"
Return a true value if OBJ is an even integer, and a false value otherwise.
.IP CLASS\->_is_odd(OBJ) 4
.IX Item "CLASS->_is_odd(OBJ)"
Return a true value if OBJ is an even integer, and a false value otherwise.
.IP "CLASS\->_acmp(OBJ1, OBJ2)" 4
.IX Item "CLASS->_acmp(OBJ1, OBJ2)"
Compare OBJ1 and OBJ2 and return \-1, 0, or 1, if OBJ1 is numerically less than,
equal to, or larger than OBJ2, respectively.
.PP
\fIString conversion\fR
.IX Subsection "String conversion"
.IP CLASS\->_str(OBJ) 4
.IX Item "CLASS->_str(OBJ)"
Returns a string representing OBJ in decimal notation. The returned string
should have no leading zeros, i.e., it should match \f(CW\*(C`^(0|[1\-9]\ed*)$\*(C'\fR.
.IP CLASS\->_to_bin(OBJ) 4
.IX Item "CLASS->_to_bin(OBJ)"
Returns the binary string representation of OBJ.
.IP CLASS\->_to_oct(OBJ) 4
.IX Item "CLASS->_to_oct(OBJ)"
Returns the octal string representation of the number.
.IP CLASS\->_to_hex(OBJ) 4
.IX Item "CLASS->_to_hex(OBJ)"
Returns the hexadecimal string representation of the number.
.IP CLASS\->_to_bytes(OBJ) 4
.IX Item "CLASS->_to_bytes(OBJ)"
Returns a byte string representation of OBJ. The byte string is in big endian
byte order, so if OBJ represents the number 256, the output should be the
two-byte string "\ex01\ex00".
.IP "CLASS\->_to_base(OBJ, BASE, COLLSEQ)" 4
.IX Item "CLASS->_to_base(OBJ, BASE, COLLSEQ)"
Returns a string representation of OBJ in base BASE with collation sequence
COLLSEQ.
.Sp
.Vb 2
\&    $val = $class \-> _new("210");
\&    $str = $class \-> _to_base($val, 10, "xyz")  # $str is "zyx"
\&
\&    $val = $class \-> _new("32");
\&    $str = $class \-> _to_base($val, 2, "\-|")  # $str is "|\-\-\-\-\-"
.Ve
.Sp
See \fB_from_base()\fR for more information.
.IP "CLASS\->_to_base_num(OBJ, BASE)" 4
.IX Item "CLASS->_to_base_num(OBJ, BASE)"
Converts the given number to the given base. This method is equivalent to
\&\f(CW_to_base()\fR, but returns numbers in an array rather than characters in a
string. In the output, the first element is the most significant. Unlike
\&\f(CW_to_base()\fR, all input values may be arbitrarily large.
.Sp
.Vb 2
\&    $x = $class \-> _to_base_num(13, 2)        # $x is [1, 1, 0, 1]
\&    $x = $class \-> _to_base_num(65191, 128)   # $x is [3, 125, 39]
.Ve
.IP CLASS\->_as_bin(OBJ) 4
.IX Item "CLASS->_as_bin(OBJ)"
Like \f(CW_to_bin()\fR but with a '0b' prefix.
.IP CLASS\->_as_oct(OBJ) 4
.IX Item "CLASS->_as_oct(OBJ)"
Like \f(CW_to_oct()\fR but with a '0' prefix.
.IP CLASS\->_as_hex(OBJ) 4
.IX Item "CLASS->_as_hex(OBJ)"
Like \f(CW_to_hex()\fR but with a '0x' prefix.
.IP CLASS\->_as_bytes(OBJ) 4
.IX Item "CLASS->_as_bytes(OBJ)"
This is an alias to \f(CW_to_bytes()\fR.
.PP
\fINumeric conversion\fR
.IX Subsection "Numeric conversion"
.IP CLASS\->_num(OBJ) 4
.IX Item "CLASS->_num(OBJ)"
Returns a Perl scalar number representing the number OBJ as close as
possible. Since Perl scalars have limited precision, the returned value might
not be exactly the same as OBJ.
.PP
\fIMiscellaneous\fR
.IX Subsection "Miscellaneous"
.IP CLASS\->_copy(OBJ) 4
.IX Item "CLASS->_copy(OBJ)"
Returns a true copy OBJ.
.IP CLASS\->_len(OBJ) 4
.IX Item "CLASS->_len(OBJ)"
Returns the number of the decimal digits in OBJ. The output is a Perl scalar.
.IP CLASS\->_zeros(OBJ) 4
.IX Item "CLASS->_zeros(OBJ)"
Returns the number of trailing decimal zeros. The output is a Perl scalar. The
number zero has no trailing decimal zeros.
.IP "CLASS\->_digit(OBJ, N)" 4
.IX Item "CLASS->_digit(OBJ, N)"
Returns the Nth digit in OBJ as a Perl scalar. N is a Perl scalar, where zero
refers to the rightmost (least significant) digit, and negative values count
from the left (most significant digit). If \f(CW$obj\fR represents the number 123, then
.Sp
.Vb 4
\&    CLASS\->_digit($obj,  0)     # returns 3
\&    CLASS\->_digit($obj,  1)     # returns 2
\&    CLASS\->_digit($obj,  2)     # returns 1
\&    CLASS\->_digit($obj, \-1)     # returns 1
.Ve
.IP CLASS\->_digitsum(OBJ) 4
.IX Item "CLASS->_digitsum(OBJ)"
Returns the sum of the base 10 digits.
.IP CLASS\->_check(OBJ) 4
.IX Item "CLASS->_check(OBJ)"
Returns true if the object is invalid and false otherwise. Preferably, the true
value is a string describing the problem with the object. This is a check
routine to test the internal state of the object for corruption.
.IP CLASS\->_set(OBJ) 4
.IX Item "CLASS->_set(OBJ)"
xxx
.SS "API version 2"
.IX Subsection "API version 2"
The following methods are required for an API version of 2 or greater.
.PP
\fIConstructors\fR
.IX Subsection "Constructors"
.IP CLASS\->_1ex(N) 4
.IX Item "CLASS->_1ex(N)"
Return an object representing the number 10**N where N >= 0 is a Perl
scalar.
.PP
\fIMathematical functions\fR
.IX Subsection "Mathematical functions"
.IP "CLASS\->_nok(OBJ1, OBJ2)" 4
.IX Item "CLASS->_nok(OBJ1, OBJ2)"
Return the binomial coefficient OBJ1 over OBJ1.
.PP
\fIMiscellaneous\fR
.IX Subsection "Miscellaneous"
.IP CLASS\->_alen(OBJ) 4
.IX Item "CLASS->_alen(OBJ)"
Return the approximate number of decimal digits of the object. The output is a
Perl scalar.
.SH "WRAP YOUR OWN"
.IX Header "WRAP YOUR OWN"
If you want to port your own favourite C library for big numbers to the
Math::BigInt interface, you can take any of the already existing modules as a
rough guideline. You should really wrap up the latest Math::BigInt and
Math::BigFloat testsuites with your module, and replace in them any of the
following:
.PP
.Vb 1
\&        use Math::BigInt;
.Ve
.PP
by this:
.PP
.Vb 1
\&        use Math::BigInt lib => \*(Aqyourlib\*(Aq;
.Ve
.PP
This way you ensure that your library really works 100% within Math::BigInt.
.SH BUGS
.IX Header "BUGS"
Please report any bugs or feature requests to
\&\f(CW\*(C`bug\-math\-bigint at rt.cpan.org\*(C'\fR, or through the web interface at
<https://rt.cpan.org/Ticket/Create.html?Queue=Math\-BigInt>
(requires login).
We will be notified, and then you'll automatically be notified of progress on
your bug as I make changes.
.SH SUPPORT
.IX Header "SUPPORT"
You can find documentation for this module with the perldoc command.
.PP
.Vb 1
\&    perldoc Math::BigInt::Calc
.Ve
.PP
You can also look for information at:
.IP \(bu 4
RT: CPAN's request tracker
.Sp
<https://rt.cpan.org/Public/Dist/Display.html?Name=Math\-BigInt>
.IP \(bu 4
AnnoCPAN: Annotated CPAN documentation
.Sp
<http://annocpan.org/dist/Math\-BigInt>
.IP \(bu 4
CPAN Ratings
.Sp
<https://cpanratings.perl.org/dist/Math\-BigInt>
.IP \(bu 4
MetaCPAN
.Sp
<https://metacpan.org/release/Math\-BigInt>
.IP \(bu 4
CPAN Testers Matrix
.Sp
<http://matrix.cpantesters.org/?dist=Math\-BigInt>
.IP \(bu 4
The Bignum mailing list
.RS 4
.IP \(bu 4
Post to mailing list
.Sp
\&\f(CW\*(C`bignum at lists.scsys.co.uk\*(C'\fR
.IP \(bu 4
View mailing list
.Sp
<http://lists.scsys.co.uk/pipermail/bignum/>
.IP \(bu 4
Subscribe/Unsubscribe
.Sp
<http://lists.scsys.co.uk/cgi\-bin/mailman/listinfo/bignum>
.RE
.RS 4
.RE
.SH LICENSE
.IX Header "LICENSE"
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
.SH AUTHOR
.IX Header "AUTHOR"
Peter John Acklam, <pjacklam@gmail.com>
.PP
Code and documentation based on the Math::BigInt::Calc module by Tels
<nospam\-abuse@bloodgate.com>
.SH "SEE ALSO"
.IX Header "SEE ALSO"
Math::BigInt, Math::BigInt::Calc, Math::BigInt::GMP,
Math::BigInt::FastCalc and Math::BigInt::Pari.

Youez - 2016 - github.com/yon3zu
LinuXploit